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Abstract
The aim of this paper is to revisit the calculation of atom–surface quantum friction in the
quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We
show that the power dissipated into field excitations and the associated friction force depend
on how the atom is boosted from being initially at rest to a configuration in which it is moving
at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a
subtle cancellation between the one-photon and part of the two-photon dissipating power,
resulting in a leading order contribution to the frictional power which goes as v4. These results
are also confirmed by an alternative calculation of the average radiation force, which scales
as v3.

Keywords: quantum friction, non-equilibrium, atom–surface interaction

1. Introduction

The interaction of moving objects with light has been in the
focus of physics even before Einstein’s annus mirabilis and
his fundamental papers about special relativity. A seminal
contribution in this context is Einstein’s derivation of Planck’s
blackbody radiation law [1, 2]: it has brought upon us not
only the concepts of spontaneous and stimulated emission.
Also the momentum exchange between atoms and photons,
and the corresponding friction and diffusion have been shown
to provide the physical picture for the thermalization of the
velocity distribution of an atomic gas, decades before the
advent of laser cooling techniques [3]. Radiative friction
(without lasers) is the process where a moving atom comes
to rest in the preferred frame set by the blackbody radiation
field [4]. (Motion relative to the frame of the cosmic
microwave background, for example, can indeed be detected
by the anisotropy in the apparent temperature [5].) Quantum
friction is the theorists’ variant of this problem, when the
temperature is set to zero. Velocity-dependent (or drag)

forces only appear when true relative motion is defined by
the presence of another object. In this paper, we consider the
simple case of an atom (or molecule) near a macroscopic half-
space filled with metallic material. The distance between the
atom and the metal surface is also macroscopic (at least a few
nm) in the sense that electronic overlap is negligible. In this
regime of distances, it is valid to use a local approximation for
the optical response of the surface, its permittivity depending
only on frequency.

It is instructive to draft a short summary of the long series
of works dealing with the problem of quantum friction on an
atom moving at constant velocity parallel to the vacuum-metal
interface. We will restrict ourselves to works that mainly used
the local approximation for the optical response, i.e. those
that considered macroscopic distances in the sense defined
above. It is interesting to note that various authors obtained
quite different results for this drag force, differing both in
their dependence on velocity and with atom-surface separation.
Unfortunately, most of these works do not critically discuss
the others nor attempt to clarify the origins of the differences.
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One of the earliest works on the problem was undertaken
by Mahanty [6], who computed the velocity dependence of
the drag force on a moving molecule. It was found that the
quantum friction force scales as vz−5 for small velocity v and
large separation z between molecule and surface. However,
this calculation was criticized by various authors since it
predicts a non-zero quantum friction even for a perfectly
reflecting surface (which lacks the possibility of referencing
relative motion, indeed). Another series of papers also
obtained a linear dependence of quantum friction on velocity.
Schaich and Harris [7] computed dynamic corrections to van
der Waals potentials for a neutral molecule moving above a
metallic plate, and modeled the molecule as a dipole oscillating
normal to the surface. The resulting friction force is again
linear in velocity but with a different asymptotic large distance
dependence as z−10. More recently, Scheel and Buhmann [8]
have considered a multi-level atom moving at constant velocity,
and employed a master equation approach to solve for the
atom dynamics in the Markov approximation. They again
found a linear dependence on velocity and a z−8 scaling in
the near-field. These same scalings (with slightly different
numerical pre-factors) were obtained by Barton [9] in a
harmonic oscillator model for the atom, where the friction
force is computed in time-dependent perturbation theory from
the power dissipated into pairs of plasmons. Høye and Brevik
have put forward an approach to quantum friction very similar
to Barton’s, and used it to compute the friction force between
two atoms [10] or two plates [11] and compared it to Barton’s
results for these particular systems.

In contrast to all the above works in the literature, various
other authors have obtained a vanishing contribution to the
atom–surface friction force linear in velocity. For example,
Tomassone and Widom [12] computed the finite temperature
friction force on molecules moving near metals using the
image charge approach, and obtained a vanishing linear-in-
v quantum friction in the limit of zero temperature. The
same conclusion was reached by Volokitin and Persson [13],
who employed fluctuation electrodynamics to compute the
Lorentz force on a moving dipole, by Dedkov and Kyasov [14],
who used the equilibrium fluctuation-dissipation theorem
to evaluate the dipole and field correlation functions, and
by Golyk et al [15], who evaluated the force using
linear response relations in fluctuation electrodynamics.
Another series of papers confirmed these results, and
derived the first non-vanishing contribution to the quantum
friction force that scales as v3. These include the
works of Dedkov and Kyasov [16], who extended their
previous calculations to capture the nonlinear dependence
of quantum friction on velocity, Pieplow and Henkel [17],
who used equilibrium fluctuation electrodynamics to derive a
relativistically covariant formulation for the friction force, and
Intravaia, Behunin and Dalvit [18], who calculated the atom-
surface drag force by generalizing fluctuation-dissipation
relations to the non-equilibrium stationary state defined by a
constant velocity.

One of the goals of this paper is to revisit the calculation of
quantum friction in probably one of the simplest and cleanest
formulations of the problem put forward by Barton [9]. Within

this approach, the zero-temperature friction force is computed
by solving the joint atom+field/matter dynamics in time-
dependent perturbation theory, starting from an initial state
in which the atom and the field/matter subsystems are both in
their (‘bare’) ground states. As emphasized by Barton, this
perturbation theory has no need to rely on assumptions related
to correlation times, linear response, or local thermodynamic
equilibrium which are implicit in many calculations performed
with the toolbox of fluctuation electrodynamics. One also does
not require fluctuation-dissipation relations. The challenge
of this approach is that the dissipation in the atomic system
is purely radiative and is generated self-consistently in the
perturbation series. This is in sharp contrast to a field theory
like the one reported by Volokitin and Persson [19] where the
basic two-point functions for atomic variables are constructed
by a re-summation procedure including radiative damping. For
simplicity, we will restrict ourselves to the near-field regime,
where quantum friction is expected to be enhanced. We
demonstrate in particular that the power dissipated into field
excitations and the associated friction force depends on how the
atom is boosted from being initially at rest to a configuration
in which it is moving at constant velocity parallel to the planar
interface.

The paper is organized as follows. Section 2 reviews
the building blocks of the quantum field theory for the atom-
field interaction and gives the time-dependent state including
amplitudes for one- and two-photon processes. In section 3
we use these results to calculate the frictional power and force
in the case where the velocity of the particle is constant for
all times. Although this obviously requires an external energy
supply to compensate for the frictional loss, the description
is actually simpler, and one recovers some of the results
presented in [9]. It is shown in particular that the O(v4)

contribution to the power of two-photon emission found in [9]
(called there PA) can be explained in terms of this special
trajectory. Section 3 also provides an alternative picture where
the expectation value of the force operator is computed in the
time-dependent state. Its stationary value at long times is found
to scale with the velocity like ∼v3. Section 4 contains the main
results of this paper. The calculation of the radiated power is
generalized to more realistic trajectories where the atom starts
at rest and is accelerated to a constant final velocity. We discuss
the role of the finite duration of the acceleration and show that:
(i) the results presented in [9] depend of the specific choice of
the atom’s trajectory; (ii) that the power bookkeeping in [9]
is incomplete and needs to be complemented with the power
needed to create the excited state. If this is done, we again
find a frictional force that scales as ∼v3 with the velocity.
Section 5 provides a review of two approaches [8, 18] that
describe quantum friction within the framework of fluctuation
electrodynamics. Some technical material is relegated to the
appendices.

2. The model

Our discussion is based on [9, 20] where one of the simplest
field theories for atom–photon interactions is developed. The
physical situation is sketched in figure 1 (left): a point-like
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Figure 1. (left) Sketch of the considered geometry. (right) Atomic energy levels.

atom moves at constant velocity v parallel to a half-space that
responds linearly to the electromagnetic field. The distance
z = zA of the atom, kept fixed, is taken much smaller than
the relevant wavelengths (non-retarded regime) so that the
field can be described by an electric potential � (equation (4)
below). The half-space is absorbing light, broadening the
surface plasmon resonance. For simplicity, we still call
‘photons’ the elementary excitations of the field, although
‘plasmon-polariton’ or ‘medium-assisted polariton’ would be
more appropriate names. The atom is described by a few
low-lying states (figure 1, right), and its position follows a
prescribed trajectory r(t). Our goal is to calculate the radiative
friction force F and the frictional power P = −ṙ · F that must
be supplied by the external agency that keeps the atom on its
path.

2.1. Relevant states and observables

The lowest quantum states of the atom are taken by analogy to
the 1s and 2p levels of the hydrogen atom: they are denoted
|g〉 for the 1s state, the three degenerate 2pi states are written
|�η〉. The unit vector �η is taken from a set {�η} forming an
orthonormal basis that we may assume real without loss of
generality. The Bohr transition frequency between the levels
is �. We focus in this paper on transitions among these energy
levels only and mention briefly where additional states would
appear. The nonzero matrix elements of the electric dipole

operator �̂
D(t) in the interaction picture are

〈g| �̂D(t)|�η〉 = �η d e−i�t , 〈�η| �̂D(t)|g〉 = �η d ei�t , (1)

where the transition dipole matrix element d is the basic
coupling constant of the field theory. It determines,
for example, the static polarizability α = (2d2)/(h̄�)

(equation (2.2) of [9]). Using rotational symmetry, one also
has the identity

∑
�η ηiηj = δij when the three excited states

are summed over.
The atom+field coupling (summation over double indices

is assumed hereafter)

V̂ (t) = −D̂i(t)Êi(�r(t), t) = D̂i∂i�̂(�r(t), t) (2)

is explicitly time-dependent via the atomic trajectory �r(t). We
will also often use the notation r(t) for the path in the xy-plane
parallel to the surface placed at z = 0. In our approach the

force acting on the atom parallel to this plane is given by the
operator [21]

F̂(t) = D̂i(t)∇Êi(�r(t), t). (3)

More general situations would include higher-order multipole
moments of the atomic charge and current distribution
(magnetic dipole, electric quadrupole . . . ) and the time
derivative of the electromagnetic momentum �D × �B. The
latter includes the so-called Röntgen interaction that takes into
account the transformation of the electromagnetic field into the
frame co-moving with the atom. This interaction is relevant at
larger (retarded) distances [8].

The field operator is expanded in a plane-wave basis
of elementary excitations (photons) and evolves freely
according to

�̂(�r, t) =
∫

d2k

∫ ∞

0
dω

(
âkω φkω exp(ik · r − iωt) + h.c.

)
.

(4)

The bosonic operators satisfy the commutation relation
[âkω, â

†
k′ω′ ] = δ(k − k′)δ(ω − ω′) and the ‘one-photon

amplitudes’ are given by (equation (2.4) of [9])

φkω =
√

ω	ω2
p/2

ω2 + iω	 − ω2
S

√
h̄

2π2k
e−kz , (5)

where the frequencies ωp, ωS , and 	 parametrize the Drude–
Lorentz form for the dielectric function ε(ω) of the half-space.
We note in particular the relation

|φkω|2 = h̄

2π2

e−2kz

k
Im R(ω) = h̄

2π2

e−2kz

k
Im

ε(ω) − 1

ε(ω) + 1
,

(6)

where R(ω) is the non-retarded reflection coefficient of
the surface. The frequency ωS gives the surface plasmon
resonance and 	 its broadening (complex pole of R(ω)). With
this expansion for the photon field, the force operator (3), for
example, takes the form

F̂(t) =
∫

d2k

∫ ∞

0
dω

(
k(

�̂
D(t) · �k)φkωâkω

× exp(ik · r(t) − iωt) + h.c.

)
, (7)

where the three-dimensional wave vector �k = (k, ik) is in fact
complex with �k · �k = 0 and �k · �k∗ = 2k2. Note that this is
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a ‘skew’ operator that connects quantum states with different
photon numbers (for the field) and different energy levels (for
the atom).

Since part of our focus will be on the power radiated into
photons and pairs of photons, let us introduce

P1 = lim
t→∞

∑
�η

∫
d3κ h̄(� + ω)

|〈�η, κ|(t)〉|2
t

(8)

P2 = 1

2
lim
t→∞

∫
d3κ1

∫
d3κ2 h̄(ω1 + ω2)

|〈g, κ1κ2|(t)〉|2
t

,

(9)

where |〈�η, kω|(t)〉|2 and |〈g, k1ω1k2ω2|(t)〉|2 are the
probabilities of finding the atom in an excited state and one
photon, and the atom in the ground state and two photons,
respectively (see sections 2.2 and 4). We also used the compact
label κ = kω and the factor 1

2 accounts for double counting
the symmetric two-photon states. The long-time limit is to
be understood within time-dependent perturbation theory: t is
typically not longer than a fraction of the relevant lifetimes.
The two-photon power has been calculated in [9]; we review
the evaluation of the integrals in appendix A. This calculation
is generalized in section 4, where also a partial cancellation
between P1 and P2 is found.

2.2. Atom+field states

In our perturbative approach the initial state is given by
the tensor product of atomic ground state and zero photons,
|g, vac〉, while the interaction is represented via the operator
V̂ (t). An expansion up to the third order in the coupling
constant d of the atom+field state |(t)〉 leads to (see figure 2)

|(t)〉 = (1 + c
(2)
0 (t))|g, vac〉

+
∑

�η

∫
d3κ (c

(1)
1 (t) + c

(3)
1 (t))|�η, κ〉

+
1

2

∫
d3κ1 d3κ2 c

(2)
2 (t)|g, κ1κ2〉 + . . . (10)

where c
(p)
n (t) denotes the transition amplitudes for states with

n photons in the pth perturbative order and can be obtained
by using the standard techniques of perturbation theory. The
relevant matrix elements are given by

〈g, vac|V̂ (t)|�η, κ〉
= i d (�η · �k)φκ exp[−i(� + ω)t + ik · r(t)], (11)

〈�η, κ|V̂ (t)|g, κ1κ2〉
= i d (�η · �k1)φκ1 ei(�−ω1)t+ik1·r(t)δ(κ − κ2)

+i d (�η · �k2)φκ2 ei(�−ω2)t+ik2·r(t)δ(κ − κ1), (12)

〈�η, vac|V̂ (t)|g, κ〉 = i d (�η · �k)φκ

× exp[i(� − ω)t + ik · r(t)] . (13)

It is important to note that the matrix elements depend on the
detail of the path r(t). Let consider first the simple case of a
constant velocity, i.e. r(t) = vt . (Corrections arising from a
realistic trajectory including an acceleration stage (‘launch’)

Figure 2. Schematic overview of the relevant states for the
atom+field theory. The atomic states are labelled g and e (actually, e
is threefold degenerate). The notation κ = kω collects the quantum
numbers of the field states, vac is the vacuum state. Two-photon
states are denoted κ1κ2. To the left of the vertical dashed line are
states that are not directly coupled to the ground state by the
atom+field interaction, illustrated by the dotted blue lines. The thick
black lines indicate the position of the surface plasmon resonance
ωS , the shaded grey area illustrates its broadening (not to scale) over
a range 	 (intrinsic) and due to the Doppler shift k · v. The Doppler
shift is responsible for the appearance of negative frequencies,
intuitively understood as measured in the frame co-moving with the
atom. The thin dash–dotted line illustrates the two-photon process
gvac ↔ gκ1κ2.

are discussed in section 4.) In this case time-dependent
perturbation theory leads to

c
(1)
1 (t) = i d (�η · �k)∗φ∗

κ

h̄(� + ω′ − iλ)
exp[i(� + ω′)t] (14)

c
(2)
2 (t) = −d2(�k1 · �k2)

∗φ∗
κ1

φ∗
κ2

exp[i(ω′
1 + ω′

2)t]

h̄2(ω′
1 + ω′

2 − iλ)

×
{

1

� + ω′
1 − iλ

+ {1 ↔ 2}
}

(15)

where the positive infinitesimal λ ensures that the atom–field
interaction is adiabatically switched on in the past. The scalar
product (�k1 · �k2)

∗ = k1 · k2 − k1k2 arises from the summation
over the three excited states |�η〉 and we have used the shorthand
ω′ = ω − k · v for the Doppler-shifted frequency (as ‘seen’ by
the moving atom).

The second-order correction c
(2)
0 (t) needs a special

handling because it involves the energy shift of the state |g, vac〉
and the rate for the process |g, vac〉 → |�η, κ〉:

c
(2)
0 (t) = i

∑
�η

∫
d3κ

d2 |�η · �k|2|φκ |2
h̄2(� + ω − k · v − iλ)

∫ t

−∞
dt ′ eλt ′ .

(16)

The second integral integral formally evaluates to λ−1eλt ≈
t + λ−1 for λ → 0 so that we identify the frequency shift and
inverse lifetime from 1 + c

(2)
0 (t) ≈ exp(−iδEgt/h̄ − γgt/2).

This yields

−iδEg − h̄γg

2
= i

∑
�η

∫
d3κ

d2 |�η · �k|2|φκ |2
h̄(� + ω − k · v − iλ)

. (17)

4
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The level shift δEg arising from equation (17) has been worked
out by Barton, equation (3.2) of [9]. For the lifetime, we get
the ‘Golden Rule’ result [30]

γg = 2π

h̄2

∑
�η

∫
d3κ |〈�η, κ|V̂ |g, vac〉|2δ(� + ω − k · v),

(18)

where the atomic motion leads to the Doppler shift of the final
photon frequency. This integral is, however, exponentially
small for reasonable parameters, as can be seen as follows. The
sum over the excited states gives

∑
�η |�η · �k|2 = �k · �k∗ = 2k2.

Inserting the coupling strength |φκ |2 from equation (6), we get

γg = α�

π

∫
d3κ k e−2kzIm R(ω)δ(� + ω − k · v) . (19)

The resonance condition 0 = � + ω − k · v jointly with
ω � 0 limits the domain for the k-integration to k · v � �.
We then have k � �/v, and the exponential gives a scaling
of this integral proportional to e−2�z/v . We follow here the
same strategy as [9] and neglect contributions that show such
an exponential scaling, assuming that the velocity is small
enough: v � �z. (For a lithium beam at 10 keV and 10 nm
distance, v/�z ≈ 0.02.) The physical interpretation of this
process is the following (see also [31] in this issue): the atomic
motion leads to an anomalous Doppler shift (ω′ < 0 in the
co-moving frame, while ω > 0) that makes the ‘spontaneous
excitation’ of the ground state possible, similar to Cherenkov
radiation [32, 33]. The rate for this process is, however,
extremely slow because of the threshold set by the atomic Bohr
frequency, ω′ = −�.

For the third-order correction to the one-photon process
one gets:

c
(3)
1 (t)= − i

2h̄

∫
d3κ1 d3κ2

∫ t

−∞
dt ′ 〈�η, κ|V̂ (t ′)|g, κ1κ2〉c(2)

2 (t ′)

− i

h̄

∫ t

−∞
dt ′ 〈�η, κ|V̂ (t ′)|g, vac〉c(2)

0 (t ′) . (20)

Due to the Bose symmetry, the two terms in the matrix
element (12) give the same contribution to the first line of
(20), and we get

c
(3)
1 (t) = i d3φ∗

κ ei(�+ω′)t

h̄3(� + ω′ − iλ)

∫
d3κ1

(�η · �k1)|φκ1 |2(�k1 · �k)∗

(ω′
1 + ω′ − iλ)

×
{

1

� + ω′
1 − iλ

+
1

� + ω′ − iλ

}

− i d(�η · �k)∗φ∗
κ ei(�+ω′)t

h̄(� + ω′ − iλ)

(γg

2
+

iδEg

h̄

)(
t +

i

� + ω′ − iλ

)
,

(21)

where the last line features again a linearly increasing part.
This amplitude will be used in section 3.2 to calculate
the average force operator for an atom in constant motion.
A correction δc

(3)
1 (t) arising from the acceleration stage is

discussed in section 4.3 and related to the energy stored in
the excited state |�η, κ〉.

3. Frictional power and force for constant velocity

The two-photon power P2 (equation (9)) has been introduced
and evaluated in detail in [9]. There, the calculation was
performed for a trajectory where the atom is at rest for t < 0
and having a constant velocity v for t > 0. We analyze the
corresponding process in the following section 4, and review
an alternative calculation reported in [8] in section 5.2. In this
section, we evaluate P2 in the case of constant velocity.

3.1. One- and two-photon emission

We find that the only relevant amplitude c
(2)
2 (t) =

〈g, κ1κ2|(t)〉 (equation (15)) translates into the following
differential emission rate

dw2 = lim
t→∞

|〈g, κ1κ2|(t)〉|2
t

d3κ1 d3κ2

2

= d4|�k1 · �k2|2|φκ1 |2|φκ2 |2
h̄4

∣∣∣∣ 1

� + ω′
1

+ {1 ↔ 2}
∣∣∣∣2

×2πδ(ω′
1 + ω′

2)
d3κ1 d3κ2

2
(22)

(the factor 1/2 comes again from the Bose symmetry). This
yields, to the fourth order in d, the power

P2 = d4

π3h̄

∫
d3κ1 d3κ2 e−2(k1+k2)z

|�k1 · �k2|2
k1k2

×(ω1 + ω2)Im R(ω1)Im R(ω2)
�2 δ(ω′

1 + ω′
2)

(� + ω′
1)

2(� + ω′
2)

2
.

(23)

A simplified evaluation is reviewed in appendix A.2, leading
to a scaling ∼v4 for a small velocity (equation (5.4) of [9]):

P2 � 9

512π

h̄v4α2ω4
p	2

ω8
Sz

10
. (24)

Such a scaling with velocity was also found within fluctuation
electrodynamics [16–18], although the numerical prefactor is
different. Equations (23) and (24) coincide exactly with one
term in Barton’s results, called there PA (see equation (5.4)
of [9]). It is sub-leading, however, compared to another
contribution (called PB) that scales as O(v2). Such a leading
velocity dependence was also put forward in [8, 34]. We
analyze the origin of the PB contribution of [9] in section 4
where the dependence on the atomic trajectory is pointed out.
The calculations of [8, 18] are reviewed in sections 5.2 and
5.3, respectively.

With respect to the scaling with the frequency parameters
for the material response in equation (24), a similar behaviour
has been observed in previous work on the metal-vacuum
surface where the plasmon resonance is at ωS = ωp/

√
2

[35–37]. The combination 	/ω2
p is then proportional to the

specific resistance of the metal. Only quasi-DC parameters
are relevant for these processes, the spectrum of the plasmon
pairs being confined to a region of width ∼ v/z around zero
frequency.

Since it will play an important role for a generic trajectory
(section 4), let us also discuss here the one-photon power P1.

5
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From equation (8) we have that to the second order in d it is
connected with the squared amplitude |c(1)

1 (t)|2, leading to the
differential excitation rate

dw1 =
∑

�η

d2 |�η · �k|2|φκ |2
h̄2 2πδ(� + ω′) d3κ . (25)

Summing over all final photon states, we recover exactly
the excitation rate γg obtained equations (17) and (18).
An exponentially small scaling with velocity still holds
when the excitation energy is included in the evaluation of
P

(2)
1 = ∫

dw1h̄(� + ω) (the superscript indicates again the
perturbative order). A consistent perturbative comparison
with P2 needs, however, a calculation up to the fourth order
in the coupling constant. To evaluate the correction P

(4)
1 to

this power in the next order, we consider the mixed term
2Re [c(1)∗

1 (t)c
(3)
1 (t)] and focus on its most divergent part,

namely the one increasing with t . We find a decrease of the
emission rate:

P
(4)
1 ≈ −γgtP

(2)
1 . (26)

This suggests the resummation P1 ≈ P
(2)
1 e−γgt , as expected by

the instability of the ground state. This shows that, also to the
fourth order, the one-photon power is exponentially suppressed
leaving, in the case of a constant velocity, P2 and then a force
F ∼ v3 as the only relevant contribution to quantum friction.
In section 4 we analyze how these results generalize for a more
realistic case where the atom, initially at rest, is accelerated to
a constant velocity v.

3.2. Average radiation force

Before proceeding, it is very instructive to directly evaluate
the frictional force given in equation (3). We consider here
the expectation value F(t) = 〈(t)|F̂(t)|(t)〉 for an atom
in uniform motion parallel to the surface. We shall use again
the expansion of the atom+field state |(t)〉 up to the third
order of the interaction given in equation (10). The nonzero
matrix elements of the force operator can be derived from
equations (11)–(13): one just needs to replace the prefactor
i in these equations by k or k1,2. They yield the average force
in the form

F(t) = 2Re
{ ∑

�η

∫
d3κ 〈g, vac|F̂(t)|�η, κ〉(c(1)

1 (t)

+c
(2)∗
0 (t)c

(1)
1 (t) + c

(3)
1 (t))

+
1

2

∑
�η

∫
d3κ d3κ1 d3κ2 〈�η, κ|F̂(t)|g, κ1κ2〉

×c
(1)∗
1 (t)c

(2)
2 (t)

}
, (27)

where we included products of amplitudes up to order three.
After a straightforward calculation based on equa-

tions (14)–(16) and (21) for the amplitudes c
(p)
n (t) (details in

appendix C), we find that the average force in the long-time
limit t → ∞ can be written as F = F(2) + F(4). The first term

F(2) = − h̄α�

π

∫
d3κ k k e−2kzIm R(ω)δ(� + ω′) (28)

is second order in the coupling constant and has a simple
interpretation: it is the recoil due to the emission of a
photon. This process is accompanied by the excitation of
the atom (Cherenkov–Vavilov radiation) and happens at the
differential rate dw1 of equation (25). With every emission,
the atom receives a momentum −h̄k opposite to the plasmon
momentum. The resulting force acting on the atom is
F = − ∫

dw1 h̄k which coincides with equation (28).
As explained in appendix C, the fourth-order contribution

to the force can be presented in the form

F(4) = − v
v2

P2 − γgt F(2) − ∇v(γgδEg)

+other exp. small terms (29)

where γg(v) and δEg(v) are the relaxation rate and Lamb shift
of the ground state, respectively, equation (17). Recall that
γg(v) arises from quantum Cherenkov–Vavilov radiation and is
exponentially small. This is also true for the second-order force
F(2) (equation (28)) because the resonance condition�+ω′ = 0
involves the same threshold as equation (19) for γg . The ‘other
exp. small’ terms not written explicitly in equation (29) have
a similar origin.

The important result is that the force (29) gives the leading
order for small velocities and involves the two-photon power
P2 obtained in equation (23). This means that for a uniformly
moving atom, the average radiation force starts like O(v3),
which is coherent with the radiated power obtained in the
previous section. The force calculation thus provides an
independent confirmation that two-photon rather than one-
photon emission (plus atomic excitation) is the dominant
loss process. A comparison with the results of Dedkov and
Kyasov [39] and Intravaia et al [18] is made in appendix A.2:
agreement up to a numerical factor is found when the atomic
transition is off-detuned with respect to the surface plasmon
resonance, � � ωS . The dependence on distance involves the
steep power law F ∼ 1/z10.

4. Accelerating the atom and subsequent radiation

In this section, we consider atomic trajectories that are
accelerated over a finite duration before reaching their final
velocity v. This material generalizes the calculation of [9]
of the two-photon process where a second term (called PB) in
the two-photon emission was found that scales with O(v2)

in velocity. The main result is that the term PB depends
sensitively on the way the atom is accelerated. The expression
for this term found in [9] is only recovered for a ‘sudden boost’
(infinitely short duration), while in the opposite or ‘adiabatic’
limit, PB becomes strongly suppressed. The scaling with
velocity O(v2) is maintained, though.

To interpret this behaviour, we have also evaluated the
one-photon power P1 and found, quite surprisingly, that for
accelerated trajectories it is not exponentially small (as in the
previous section), it is negative, and exactly cancels the two-
photon emission PB. This suggests the following picture:
the acceleration stage creates a finite occupation pe ∼ v2

of the excited state (including one photon). The excitation
process is qualitatively similar to the ‘acceleration-induced

6
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radiative excitation of ground-state atoms’ analyzed by Barton
and Calogeracos [38]. Subsequently, this ‘real’ rather than
‘virtual’ excitation decays resonantly into another photon. The
resonance condition fixes the energy of the second photon, so
that the radiative power captured by the term PB ∼ peγeh̄� is
balanced by a decaying excitation probability (negative P1).

The calculation proceeds by working out the probability
amplitudes, starting with the one-photon amplitude

c
(1)
1 (t) = − d(�η · �k∗)φ∗

κ

h̄

∫ t

−∞
dt1 ei(�+ω)t1 e−ik·r(t1) , (30)

where the matrix element (11) of the atom–field coupling was
used. Recall the compact notation κ = kω for the photonic
modes and note that we have kept a generic atomic path r(t1)
under the integral. The t1-integral appearing here will be
denoted A(e, κ; t) and discussed in detail in section 4.1. We
prove there that at large times (once the launch is completed),
the amplitude takes the form

t � τ : c
(1)
1 (t) ≈ −d(�η · �k∗)φ∗

κ

h̄

{
ei(�+ω′)t

i(� + ω′)
+ Be,κ

}
, (31)

where the first term is the same as for a constant-velocity
path (equation (14)). We interpret the second term as a non-
adiabatic excitation process whose amplitude is approximately
(for small velocity) given by

Be,κ ≈ i (k · v) e−ik·r(0)

(� + ω)2
�((� + ω)τ) . (32)

The dimensionless factor �((�+ω)τ) depends on the specific
shape of the path. It is proportional to the Fourier transform of
the acceleration (equation (50)) and decays to zero when the
product of duration τ and frequencies �+ω is much larger than
unity. In the opposite limit (‘sudden acceleration’), �((� +
ω)τ) → 1.

In the next order of perturbation theory, we deal with the
two-photon amplitude

c
(2)
2 (t) = − i

h̄

∑
�η

∫
dκ

∫ t

−∞
dt2 c

(1)
1 (t2)〈g; κ1, κ2|V̂ (t2)|�η; κ〉

= d2

h̄2 (�k1 · �k2)
∗φ∗

κ1
φ∗

κ2

∫ t

−∞
dt2 A(e, κ1; t2) ei(−�+ω2)t2

×e−ik2·r(t2) + {1 ↔ 2} . (33)

The additional term denoted {1 ↔ 2} makes this expression
symmetric under plasmon exchange. The t2-integral written
here will be called M12(t) similar to [9]. We find (section 4.2)
for this two-photon amplitude the asymptotic form

t � τ : M12(t) ≈ − ei(ω′
1+ω′

2)t

(� + ω′
1)(ω

′
1 + ω′

2)

+
Be,κ1

i(ω′
2 − �)

ei(ω′
2−�)t + cst. , (34)

where the cst. denotes t-independent terms. The first term
again recovers the previous constant-velocity result from
equation (15). The second term is proportional to the non-
adiabatic excitation amplitude Be,κ (equations (31) and (32))
that appeared in the first order.

Figure 3. Three possible atomic trajectories: smooth continuous
boost (thick black line), linear acceleration ramp (thin blue line),
and instantaneous boost (dashed gray line). See also the table below
for more detail.

The power of two-photon emission from equation (9) is
proportional to |M12(t)+M21(t)|2/t in the large-t limit. This
is calculated in equation (45) below. In section 4.3, we finally
discuss the rate of change of the energy stored in the excited
state |�η, κ〉 (the one-photon power P1 defined in equation (8))
and show that it balances exactly the O(v2) contribution to the
two-photon power.

Curve ẋ(t) ẍ(t)

Thick black v/(1 + e−t/τ ) vτ−1/(2 + 2 cosh t/τ )

Thin blue




0 for t < −τ

(t + τ)v/(2τ)

for − τ < t < τ

v for t > τ




0 for t < −τ

v/(2τ)

for − τ < t < τ

0 for t > τ

Dashed gray

{
0 for t < 0
v for t > 0

vδ(t)

4.1. Exciting the atom: the one-photon amplitude

Let us consider the first step of the physical process described
above. The one-photon transition amplitude is proportional to

A(e, κ; t) =
∫ t

−∞
dt1 ei(�+ω)t1 e−ik·r(t1). (35)

A few general properties of the first-order amplitude can be
secured without specifying a particular path. We only require
that r(t) changes its velocity around t = 0 with a typical
duration τ . We also assume that the origin of the coordinate
system is chosen such that for t � τ , we have r(t) ≈ vt (see
figure 3 for a sketch). Let us focus first on t > 0. We split the
integral into −∞ < t1 � 0 and 0 � t1 � t , leading to a natural
decomposition A(t) = A− + A+(t). For the term A+(t), we
perform a partial integration after subtracting and adding vt1
in the exponent (see equation (30)). This leads to

A+(t) = ei(�+ω)t1 e−ik·r(t1)

i(� + ω − k · v)

∣∣∣∣
t

0

+
∫ t

0
dt1

k · (ṙ − v)

� + ω − k · v
ei(�+ω)t1 e−ik·r(t1) . (36)
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The advantage of this representation is that the first term yields
what we call the ‘adiabatic limit’7

A(ad)
+ (e, κ; t) = ei(�+ω)t e−ik·r(t)

i(� + ω − k · v)
(37)

which is nothing but the term we found previously for a
trajectory with constant velocity (see equation (14)). In the
integrand in equation (36), the difference ṙ − v vanishes as
soon as the atom has reached a constant velocity. Hence the
integral approaches a constant for t � τ . In this limit, we
therefore proved that the excitation amplitude takes the form

t � τ :

A(e, κ; t) = A(ad)
+ (e, κ; t) + Be,κ + o(1) , (38)

where Be,κ can be read off by adding A− to the remaining terms
in equation (36). The error o(1) in equation (38) is made of
terms that vanish in the limit t � τ . A similar manipulation
can be applied when t � 0. No splitting and subtraction are
needed, and we get

t � 0 : A(e, κ; t) = ei(�+ω)t e−ik·r(t)

i(� + ω)

+
∫ t

−∞
dt1

k · ṙ
� + ω

ei(�+ω)t1 e−ik·r(t1) . (39)

The first term may again be called ‘adiabatic’ and does not
contain any contribution from the lower limit t = −∞ because
we assume that the atom–field coupling is switched off there.
Note also that there is no Doppler shift in the frequency
denominator. The second term vanishes for t � −τ when
the atom is still at rest.

4.2. Emitting the second photon

Here, we focus on the two-photon amplitude in the long-time
limit t → ∞. Using the time scale τ for the ‘acceleration
stage’ of the atomic trajectory, we assume more specifically
t � τ . Let us introduce a time ta with the property τ �
ta � t such that the atomic velocity is ṙ(ta) = v. We
split the integration range of the t2-integral in equation (33)
into −∞ < t2 < ta and into ta < t2 < t obtaining
M12(t) = M− + M+(t) (and similarly for M21(t)). We shall
see that only the probability |M+(t)|2 contains terms growing
linearly with t and then contributing to the radiated power,
while the rest tends towards a constant. The contribution
M+(t) can be evaluated by inserting the asymptotic form (38)
for the amplitude A(e, κ1; t) into the integral:

M+(t) =
∫ t

ta

dt2
(
A(ad)

+ (e, κ1; t2) + Be,κ1

)
ei(ω2−�)t2

× e−ik2·r(t2)

= M(A)
+ (t) + M(B)

+ (t). (40)

Because, for t > ta , the atomic velocity is constant and the
first term evaluates to

M(A)
+ (t) = − ei(ω′

1+ω′
2)t2

(� + ω′
1)(ω

′
1 + ω′

2)

∣∣∣∣∣
t

ta

, (ω′
i = ωi − k1 · v)

(41)
7 This is not a fully adiabatic expression since the denominator contains v
instead of the instantaneous atomic velocity ṙ(t).

we recover the result for a constant velocity (see equation (15)).
We symmetrize under photon exchange, square and get in the
limit t � ta:∣∣M(A)

+ (t) + {1 ↔ 2}∣∣2

= 2π(t − ta)δ(ω
′
1 + ω′

2)
(2� + ω′

1 + ω′
2)

2

(� + ω′
1)

2(� + ω′
2)

2
, (42)

where the sum ω′
1 + ω′

2 in the numerator can of course be
omitted. The second term M(B)

+ (t) in equation (40) is an
elementary integral as well:

M(B)
+ (t) = Be,κ1

i(ω′
2 − �)

ei(ω′
2−�)t2

∣∣∣t
ta

. (43)

We symmetrize again and identify the individual squares as
the leading terms:∣∣M(B)

+ (t) + {1 ↔ 2}∣∣2

= 2π(t − ta)δ(ω2 − �)|Be,κ1 |2 + {1 ↔ 2} . (44)

It can be checked that the ‘mixed terms’ in the squared
amplitude lead to contributions that either oscillate or tend
to constants as t → ∞ (no inverse squares like 1/(ω′

1 + ω′
2)

2

appear). This also holds true for the mixed terms involving one
factor M− (see appendix B for more details). Finally we get

lim
t→∞

|M12(t) + M21(t)|2
t

= 2πδ(ω′
1 + ω′

2)
4�2

(� + ω′
1)

2(� + ω′
1)

2

+2πδ(ω′
2 − �)

∣∣Be,κ1

∣∣2
+ {1 ↔ 2} . (45)

From the above calculation, one can see that the first line
of equation (45) involves only the constant-velocity part of
the atomic path and hence does not depend on the way the
atom is put into motion. As was reviewed in section 3 and
appendix A.2, this term contributes the amount PA ∼ v4 to
the two-photon emission. The second line of equation (45)
leads to

PB = α2�2

4h̄

∫
d3κ1 d3κ2 (ω1 + ω2)|�k1 · �k2|2

×|φ1φ2|22πδ(ω2 − �)|Be,κ1 |2 (46)

and scales with v2 for small velocity (see appendix A.1). This
arises because the amplitude Be,κ ∼ v, as we now show.

We start with the general expression collected from the
terms in equations (36) and (39) that become constants for
large t � τ :

Be,κ = e−ik·r(0)

i(� + ω)
+

∫ 0

−∞
dt1

k · ṙ
� + ω

ei(�+ω)t1 e−ik·r(t1)

− e−ik·r(0)

i(� + ω − k · v)

+
∫ ∞

0
dt1

k · (ṙ − v)

� + ω − k · v
ei(�+ω)t1 e−ik·r(t1) . (47)

The first terms in the two lines sum to

e−ik·r(0)

i(� + ω)
− e−ik·r(0)

i(� + ω − k · v)
= (−k · v) e−ik·r(0)

i(� + ω)(� + ω − k · v)
.

(48)
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This is also what is found for [9]’s ‘kink trajectory’ where
ṙ = 0 for t < 0 and ṙ = v for t > 0. The remaining integrals
are bounded by O(kvτ/(� + ω)) so that their contribution to
the amplitude Be,κ is also linear in the velocity v. To proceed,
we apply another partial integration to the two integrals in
equation (47). Summing the results and expanding for small
v, one gets∫ 0

−∞
dt1

k · ṙ
� + ω

ei(�+ω)t1 e−ik·r(t1)

+
∫ ∞

0
dt1

k · (ṙ − v)

� + ω − k · v
ei(�+ω)t1 e−ik·r(t1)

≈ k · v e−ik·r(0)

i(� + ω)2
− e−ik·r(0)

i(� + ω)2

∫ ∞

−∞
dt1k · r̈ ei(�+ω)t1 (49)

where the first term cancels with (48) to leading order in v. We
are thus left with the Fourier integral of the atomic acceleration

Be,κ ≈ − e−ik·r(0)

i(� + ω)2

∫ ∞

−∞
dt1k · r̈(t1) ei(�+ω)t1

= i (k · v) e−ik·r(0)

(� + ω)2
�((� + ω)τ) . (50)

which is the result announced in equation (32). This already
permits us to draw a conclusion for a generic trajectory whose
velocity is monotonically raised to its final value v. The Fourier
transform of the acceleration then exists and is maximal for
� + ω = 0. If the acceleration occurs over a finite duration
O(τ ), the Fourier transform drops to zero when the frequencies
satisfy (� + ω)τ � 1. On physical grounds, it seems quite
plausible that the acceleration stage takes more than a few
femtoseconds while � is typically in the visible range (and
ω > 0). This inequality is therefore amply satisfied, and the
corresponding two-photon emission is strongly suppressed.

It is interesting to examine different atomic trajectories
r(t) and provide a quantitative analysis of how the ‘acceleration
stage’ affects the final result for the two-photon emission PB.
A trivial example to begin with is an inertial path with constant
velocity. The acceleration is zero at all times, and equation (50)
gives Be,κ = 0. Hence the two-photon power PB = 0, and only
the O(v4) contribution called PA from section 3 remains.

Our second example is [9]’s instantaneous boost, r̈(t) =
vδ(t). The trajectory is plotted as a dashed line in figure 3.
The Fourier integral gives

|Be,κ |2 ≈ (k · v)2

(� + ω)4
. (51)

This result can also been inferred from equation (4.10) of [9]
by writing it in the form given in equation (45) (and taking into
account the erratum).

As a third example, consider a linear velocity ramp,
as illustrated by the middle path in figure 3. Velocity
and acceleration are given in the caption: specifically the
acceleration is constant during an interval of length 2τ (details
of the full calculation for this path can be found in appendix B).
The sinc-function resulting from the Fourier integral (50) then
gives

|Be,κ |2 ≈ (k · v)2

(� + ω)4

sin2[(� + ω)τ ]

(� + ω)2τ 2
. (52)

The second fraction reproduces [9]’s path in the limit τ → 0,
but gives a strong reduction in the opposite case. Since
the typical frequencies contributing to the integral (46) are
ω1 � ωS due to the plasmon pole, |φ1|2 ∼ Im R(ω1), the
power PB gets reduced by a factor 1/(τ(� + ωS))

2 � 1.
This result for the linear velocity ramp has been reproduced
through a differently routed calculation by Barton (private
communication).

Finally, let us consider the ‘smooth boost’ plotted as a thick
black line in figure 3. The acceleration is given by an infinitely
differentiable function (see figure caption) whose maximum
value is v/(4τ) and whose width is O(τ ). Evaluating its
Fourier transform, we get the probability

|Be,κ |2 = (k · v)2

(� + ω)4

[
π(� + ω)τ

sinh[π(� + ω)τ ]

]2

. (53)

The second fraction in this expression shows that compared to
the ‘kink path’, the power PB becomes exponentially small in
the limit of an adiabatic boost τ� � 1.

Let us attach a physical meaning to the quantities
calculated in the previous sections. Going back to
the Schrödinger picture, the first-order amplitude c

(1)
1 (t)

(equation (31)) takes the form

c
(1)
1 (t) ≈ −d(�η · �k∗)φ∗

κ

h̄

{
1

i(� + ω′)
+ Be,κ e−i(�+ω′)t

}
. (54)

The first term, independent of t , can be understood as being part
of the (‘dressed’) ground state |g, vac〉 (still at zero energy),
where the atom is surrounded by a (‘virtual’) cloud of photons
(plasmons). The second term oscillates at the (bare) energy
of the excited state |�η, κ〉, but including the Doppler shift (ω′

instead of ω). It can be shown that the Hamiltonian of our
atom+field theory can be transformed to a time-independent
form by going into a frame moving with the atom. (Details are
postponed to another paper). In this picture, the state |�η, κ〉
evolves freely at the frequency �+ω′. We therefore conjecture
that along a path with a time-dependent acceleration, the
amplitude Be,κ describes the ‘real’ excitation of the atom+field
system [38]. The required energy transfer is in heuristic
agreement with the frequency uncertainty arising from the
finite duration of the acceleration, as expressed in the Fourier
integral (50). We can also define an excitation probability
(not a rate), summing over the plasmon states and the three
sublevels |�η〉

pe =
∑

�η

d2

h̄2

∫
d3κ |�η · �k|2|φκ |2|Be,κ |2

= α�

2π2

∫
d3κ k e−2kzIm R(ω)

(k · v)2

(� + ω)4

× |�((� + ω)τ)|2 . (55)

where the k-integral can be performed, yielding 3πv2/(4z5).

4.3. Excitation power: a subtle cancellation to the fourth order

The previous analysis examined in detail all the components of
the physical process describing the acceleration, the excitation
and the subsequent radiation of an atom in motion near a

9
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surface. This was necessary in order to discern and generalize,
to the case of a generic trajectory, each single contribution
to quantum friction. In [9] the friction force F is calculated
based on the identification with the two-photon power loss,
P2 = −v · F. For a generic trajectory this calculation led
to P2 = PA + PB where PB ∼ O(v2) gives the leading order.
Barton thus concludes that F ∼ v for small velocity [9], at least
for the trajectory called instantaneous boost above. In the last
section we showed, however, that the value of PB depends on
the detail of the trajectory: a smooth boost gives a significant
reduction, and a constant velocity simply leads to PB = 0 (see
also section 3).

Although physically sounding, the calculation based on
P2 is incomplete since it does not take into account the power
needed to create the excited state |�η, κ〉, called the one-photon
power P1 in equation (8). A similar omission in earlier work
was criticized by Volokitin and Persson, see [13]. (For an
analysis of the ‘internal energy’ appearing in P1, see also [39],
for example.) The sum P1 + P2 translates the change in the
total energy of the evolving state |(t)〉. This energy is not
conserved, since the interaction is time-dependent. For the
same reason, only the free Hamiltonian Ĥ0 = ĤA + ĤF (atom
and field) is used to define the energy of the state |(t)〉:

〈(t)|Ĥ0|(t)〉 ≈ t (P1 + P2) + . . . (56)

The power P1 is calculated again by pushing to the third
order the one-photon amplitude 〈�η, κ|(t)〉, called c

(3)
1 (t) in

equation (10). This extension is necessary because at first
order, even with an acceleration phase, the excitation rate is
exponentially small (see equation (19)). We focus again on
the state sequence |g, vac〉 → |�η, κ〉 → |g, κ1κ2〉 → |�η, κ〉
passing via the two-photon state. (The sequence via the ground
state |g, vac〉 gives again exponentially small contributions.)

The calculation proceeds along lines similar to section 3.
Perturbation theory yields the integral (20) where we insert
now the expression for 〈g, κ1κ2|(t)〉 generalized to the case
of a generic trajectory (proportional to the amplitude M(t)

from section 4.2). In addition to the constant velocity result
we obtain a correction δc

(3)
1 (t) to the amplitude coming from

the second term in equation (34) and its symmetrized partner.
We consider that interaction times in the interval τ < t3 < t

give the main contribution and approximate

δc
(3)
1 (t) ≈ d3

h̄3

∫
d3κ1(�k1 · �k)∗|φκ1 |2φ∗

κ (�η · �k1)

×
∫ t

τ

dt3

{
Be,κ1 ei(ω′−ω′

1)t3

i(ω′ − � − iλ)
+

Be,κ

i(ω′
1 − � − iλ)

}
. (57)

The second term in the curly brackets gives rise to a
linear increase in time. The fourth-order approximation to
the excited-state probability |〈�η, κ|(t)〉|2 ≈ |c(1)

1 (t)|2 +
2Re[c(1)∗

1 (t)δc
(3)
1 (t)] + . . . thus provides us with an

excitation rate

lim
t→∞

|〈�η, κ|(t)〉|2 − |c(1)
1 (t)|2

t

≈ −2d4

h̄4 Re

[
(�η · �k)|φκ |2

∫
d3κ1(�k1 · �k)∗|φκ1 |2(�η · �k1)

× |Be,κ |2
i(ω′

1 − � − iλ)

]
. (58)

Note that for this rate of change, we only need the non-
adiabatic amplitude Be,κ in the first-order expression c

(1)∗
1 (t)

(equation (31)), since the other combinations give rise to
oscillating contributions. The one-photon power (8) becomes

P1 = −α2�2

4h̄

∫
d3κ d3κ1(� + ω)|φκ |2|φκ1 |2|�k1 · �k|2|Be,κ |2

×2πδ(ω′
1 − �) . (59)

To the lowest order in velocity (recall that Be,κ is proportional
to v), we may drop the Doppler shift in δ(ω′

1 − �). Now,
it is possible to check that the one-photon power (59)
exactly balances the contribution PB to the two-photon power
(equation (46)). It leaves PA as the only relevant contribution
for the total dissipated power, even for a particle path including
an acceleration phase.

The work developed in this section is the central result
of our paper. Firstly, it shows that the perturbative approach
described in [9] strongly depends on the acceleration phase
that brings the atom to a constant velocity v. Secondly, it
proves that the description given in [9] of the quantum friction
is incomplete and that, when corrected, it is in agreement with
a drag force at zero temperature proportional to v3.

5. Results from fluctuation electrodynamics

In the previous sections we provided a complete description of
quantum friction within the framework of perturbation theory.
This approach has the merit of relying on well-established
techniques, even if the mathematical machinery is somewhat
cumbersome. Quantum friction, however, has been examined
within other frameworks, approaching the problem from other
perspectives. For the sake of completeness, we review in this
section some of the results from fluctuation electrodynamics,
which is one of the most used approaches to describe the
quantum mechanical interaction of two neutral objects.

5.1. Spectral densities

Correlation functions of the atom and field variables are a
convenient way to characterize the atom–field interaction in
terms of ‘resonant’ and ‘non-resonant’ processes. We start by
collecting a few formulas for the free observables and evaluate
their correlations in the ‘bare’ ground state denoted as |g, vac〉.

5.1.1. Field correlations. We use ‘time-ordered’ correlations
as they often appear in time-dependent perturbation theory.
For the free scalar potential and t > t ′

C�(�r, �r ′, t − t ′) = 〈vac|�̂(�r, t)�̂(�r ′, t ′)|vac〉
= h̄

2π2

∫
d2k

k

∫ ∞

0
dω Im R(ω)eik·(r−r′)−k(z+z′)e−iω(t−t ′).

(60)

Evaluating this for an atom with constant velocity v, we get
r(t) − r(t ′) = (t − t ′)v and observe that the vacuum spectrum
extends into negative frequencies, of the order O(−k · v) =
O(−v/z). This estimate is based on the natural momentum
cutoff provided by the exponential e−k(z+z′). The rest of the
frequency dependence is governed by the reflection amplitude
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R(ω): a peak at the surface plasmon resonance ω = ωS with
width 	 and an algebraic decay ∼ 1/ω3 in the UV. In the
time domain, these features translate into a correlation that
oscillates at ωS with an exponential envelope of width 1/	,
plus an algebraic long-term tail ∼ 1/(t − t ′)2 that arises from
the ‘Ohmic’ behavior Im R(ω) ∼ ω for ω → 0. For the
electric field, evaluated along an atomic path parallel to the
surface, we get similarly (ω′ = ω − k · v, frequency in the
co-moving frame)

〈vac|Êi(�r(t), t)Êj (�r(t ′), t ′)|vac〉

= h̄

2π2

∫
d2k

kik
∗
j e−2kz

k

∫ ∞

−k·v
dω′ Im R(ω′ + k · v)

×e−iω′(t−t ′) . (61)

Note that for a more general trajectory, the correlations are
not stationary, and more involved spectral representations like
Wigner or wavelet transforms would be needed. The response
function of the free field is known as the Green function
(tensor). Standard linear response theory gives

Gij (�r, �r ′, t − t ′) = i

h̄
�(t − t ′)〈vac|[Êi(�r, t), Êj (�r ′, t ′)

]|vac〉

= i

2π2
�(t − t ′)

∫
d2k

e−k(z+z′)

k
eik·(r−r′)

×
∫ ∞

0
dω Im R(ω)

[
kik

∗
j e−iω(t−t ′) − kj k

∗
i eiω(t−t ′)] (62)

with an obvious evaluation along the path of a moving atom.
(It can be checked that the last line of equation (62) agrees with
the solution of the Maxwell equations for a point dipole in the
non-retarded approximation).

5.1.2. Dipole correlations. The free dipole operator shows
in the theory of [9] a sharp line. It is actually the specific
challenge of this model that the line broadening appears self-
consistently at higher orders in perturbation theory. In the
atomic ground state

〈g|D̂i(t)D̂j (t
′)|g〉(0) = δij

h̄α�

2
e−i�(t−t ′) (63)

after summing over the degenerate excited states |�η〉. In a
simple scheme where the states |�η〉 have decay rates γ�η, this
could be generalized to

〈g|D̂i(t)D̂j (t
′)|g〉 ≈ h̄α�

2

∑
�η

ηiηj e−i�(t−t ′)−γ�η|t−t ′|/2 (64)

giving a Lorentzian spectrum:

Sij (ω) =
∫

dτ eiωτ 〈g|D̂i(t + τ)D̂j (t)|g〉

= h̄α�

2

∑
�η

γ�η ηiηj

(ω − �)2 + γ 2
�η /4

. (65)

This is also the result of master equation techniques in
combination with the regression formula [22]. Fermi’s Golden
Rule yields for the decay rates in front of a smooth metallic
surface (equations (2.10) and (2.11) in [9]): γ�η = ηiqij ηj γ ,
γ = (α�)/(4z3)Im R(�), where qij is a dimensionless

diagonal tensor with elements qxx = qyy = 1/2 and qzz = 1.
We recognize again that Im R(ω) gives the spectral density of
the plasmon field.

The atomic response is given by the polarizability tensor
whose lowest approximation in the spectral domain is

α
(0)
ij (ω) = i

h̄

∫ ∞

0
dτ eiωτ 〈g|[D̂i(t + τ), D̂j (t)

]|g〉

= δij

d2

h̄

(
1

� − ω − iλ
+

1

� + ω + iλ

)

= δijα�2

�2 − (ω + iλ)2
, (66)

where λ is a positive infinitesimal that shifts the frequency
into the upper half-plane. This has the same structure as for
an oscillator. A simple finite-damping generalization would
replace λ by the actual line widths:

αij (ω) ≈
∑

�η

ηiηjα�2

�2 − (ω + iγ�η)2
. (67)

(For a discussion of the imaginary part near the anti-resonant
peak � + ω ≈ 0, see [23, 24].) We note that for infinitely
narrow lines, the dipole correlation functions in equations (63)
and (66) satisfy the zero-temperature fluctuation-dissipation
(FD) relation [25, 26]

Sij (ω) = 2h̄�(ω)Im αij (ω) , (68)

where Sij (ω) is the dipole correlation spectrum in
equation (65). The FD relation is not satisfied, however, by
the line-broadened expressions presented in equations (64) and
(67): the dipole spectrum does not vanish like Im αij (ω) ∼
ω near zero frequency, and extends also into the negative
frequency band. In general, however, these expressions are the
result of approximations. We recall that the FD relation is valid
under relatively mild equilibrium requirements, in particular
it also holds when the dynamics of the dipole operator is
non-linear [26, 27]. For driven systems like in our case,
generalizations of the FD relation in equation (68) [28] involve
additional ‘source’ terms [18] or correlations of observables
that are conjugate with respect to entropy (production) rather
than the Hamiltonian [29].

5.2. Macroscopic QED with Markov approximation

Scheel and Buhmann derived the quantum friction force on
an atom of arbitrary internal state from the average Lorentz
force [8], which, in the non-retarded limit, is given in
equation (3) at the beginning of this paper. The time evolution
of the electric field is obtained by formally integrating the
equation of motion for the bosonic operators âκ , â†

κ with the

result that �̂E(�r, t) = �̂Efree(�r, t) + �̂E(S)(�r, t) with the free field
operator

�̂Efree(�r, t) =
∫ ∞

0
dω �̂E(�r, ω) e−iωt + h.c. (69)

When the atom is not externally driven, then we find in
normal ordering and an initial vacuum state for the field,

11
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〈· · · �̂E(�r, ω)〉 = 〈 �̂E†(�r, ω) · · ·〉 = 0. When evaluating the
radiative force �F(t) in normal order, it thus turns out that it is
entirely due to radiation reaction, i.e. the relevant electric field
is the source field emitted by the atom at previous times. This
can be written with the field’s Green function (equation (62)):

Ê
(S)
i (�x, t) =

∫
dt ′ Gij (�x, �r(t ′), t − t ′)D̂j (t

′) , (70)

where �̂D(t ′) is the dipole operator. The velocity-dependent
force is due to the delay in the radiation reaction field: the atom
acts as a source for the electric field at a previous point on its
trajectory �r(t ′); the generated field then causes a force at a later
position �r(t)where the atom has moved to in the meantime. For
an atom moving normal to the surface, Doppler shifts of atomic
transition frequencies and line widths give rise to additional
velocity-dependent effects. At retarded distances, the Röntgen
coupling of the moving atom to the electromagnetic field needs
to be taken into account [8].

For our problem with short (non-retarded) distances to the
surface, the Green function in equation (62) yields a natural
split of the source field into positive and negative frequency

components �̂E(S)(�x, t) = �̂E (S)(�x, t) + h.c., where

�̂E (S)(�x, t) = i

2π2

∫
d2k

�k
k

e−k(x3+z(t ′))
∫ ∞

0
dω Im R(ω)

×
∫ t

−∞
dt ′ eik·(x−r(t ′))−iω(t−t ′)(�k∗ · �̂D(t ′)).

(71)

In the following, we evaluate this at the position �x = �r(t)
of the atom and assume that the latter is moving at constant
velocity v parallel to the surface. Although this is not the most
general trajectory, we will later argue that within the Markov
approximation used in this subsection the precise history of
how the particle achieves its terminal velocity does not matter.
The average Lorentz force thus becomes

�F(t) = 〈D̂i(t) �∇Ê (S)
i (�r(t), t) + h.c.〉

= − 1

2π2

∫
d2k

�k
k

e−2kz

∫ ∞

0
dω Im R(ω)

×
∫ t

−∞
dt ′ e−i(ω−k·v)(t−t ′)kik

∗
j 〈D̂i(t)D̂j (t

′)〉 + c.c.

(72)

In [8], this expression was expanded for small v; for the ease
of comparison with other approaches, we defer this to a later
stage (equation (77) below).

For weak atom–field coupling, we may evaluate the
dipole–dipole correlation function 〈D̂i(t)D̂j (t

′)〉 using the
Markov approximation. This entails converting the equations
of motion for the atomic operators into an integral equation
and taking the slowly-varying operators out of the integral.
The result is an effective solution to the equations of motion
involving only operators at a single time t . Hence, all memories
of previous quantum states have been lost. As shown in [40],
the Markov approximation may become invalid, e.g. if an
excited atom near-resonantly interacts with a narrow resonance

of the medium-assisted field (which is not the case here). For
our case of an atom initially prepared in its ground state, the
upshot of this analysis is the following representation of the
dipole correlation function in terms of lowering operators Âg�η
between the atomic levels:

〈g|D̂i(t + τ)D̂j (t)|g〉 = d2
∑

�η
ηiηj 〈g|Âg�η(t + τ)Â

†
g�η(t)|g〉

(73)

d

dτ
〈g|Âg�η(t + τ)Â

†
g�η(t)|g〉

= ( − i� − 1

2
γ�η

)〈g|Âg�η(t + τ)Â
†
g�η(t)|g〉 , (74)

where the second line contains the atomic frequency � and
the line width of the |g〉 ↔ |�η〉 transition. This also yields the
correlation function given in equation (64), using in the initial
condition the closure relation

∑
�η〈g|Âg�η(t)Â

†
g�η(t)|g〉 = 1 for a

ground-state atom. Coming back to the radiation reaction force
(equation (72)), at large times the integral over t ′ evaluates to∫ t

−∞
dt ′ e−i(ω−k·v)(t−t ′)〈g|D̂i(t)D̂j (t

′)|g〉

= d2
∑

�η

ηiηj

i(� + ω − k · v) + γ�η
. (75)

Thus for t → ∞ the lateral force is

F = − h̄α�

(2π)2

∫
d2k

k
k

e−2kz

∫ ∞

0
dω Im R(ω)

×
∑

�η

|�η · �k|2γ�η
(� + ω′)2 + γ 2

�η /4
, (76)

where ω′ = ω − k · v is again the Doppler-shifted
frequency. If this were evaluated for an infinitesimal (and
isotropic) linewidth, we would recover the first-order force
from equation (28), exponentially suppressed for small v.
Following [8], we keep a finite linewidth, observe that the
lateral force vanishes for an atom at rest, and expand for
small v:

F ≈ − h̄α�

2π2

∫
d2k

k(k · v)

k
e−2kz

∑
�η

|�η · �k|2γ�η

×
∫ ∞

0
dω

Im R(ω)

(� + ω)3
. (77)

We recall that this result holds for an atom moving parallel
to a surface at nonretarded distances. Note that due to the
Markov approximation made, no memory of previous times is
retained in the evolution equation for the atomic variables. In
particular, this means that this result does not depend how the
atom is accelerated to its final velocity v. The line widths γ�η
for the smooth metal surface of the present model have been
given in the previous section where their anisotropy was also
discussed. Note that this and the friction force were incorrectly
given in [8] due to an error in the averaging over excited
states. The corrected calculation can be found in [41]. The
sum over the excited states, weighted with their line widths,
leads to

∑
�η |�η · �k|2γ�η = 3

2γ k2, where γ = γz is the line width
parameter for a perpendicular dipole. The frequency integral
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in equation (77) can be performed with a Wick rotation to the
imaginary axis∫ ∞

0
dω

Im R(ω)

(� + ω)3
= �

∫ ∞

0
dξ

�2 − 3ξ 2

(�2 + ξ 2)3
R(iξ)

≈ πω2
p

4ωS(� + ωS)3
. (78)

where the last expression was obtained for a narrow surface
plasmon resonance (	 � ωS , see also equation (A.2)).
Performing the k-integral, we finally get for the lateral force

F = − 3h̄α�

16π

ω2
pγ

ωS(� + ωS)3

∫
d2k k k(k · v) e−2kz

= − v
9h̄α2�3

512z8

ω4
p	

ωS(� + ωS)3(�2 − ω2
S)

2
, (79)

which gives a frictional power −F · v which agrees with the
value for PB given in equation (46) and first derived in [9].
The significance of this agreement remains unclear at the
moment due to the very different underlying assumptions. The
calculation reviewed in this subsection depends only on the
final atomic velocity, the details of its launching procedure
being lost in the memory-less Markovian behaviour due to
the finite correlation time resulting from atomic dissipation
(spontaneous decay). On the other hand, the time-dependent
perturbation theory of [9] is valid for small times and so
implicitly assumes an infinite correlation time. It hence
depends on the atomic acceleration trajectory, where the
agreement with the above result is found only for a very specific
out of many possible choices: sudden acceleration. For a
more meaningful comparison, a calculation along the lines
of [9] could be performed for a dissipative system with a finite
correlation time, where at sufficiently large times one would
expect the result to also be independent of the acceleration
stage.

5.3. Non-equilibrium dipole correlations

The approach followed by Intravaia et al [18] combines
techniques of fluctuation and macroscopic electrodynamics.
While the expression for the radiation force has the same
structure as equation (72) above, the calculation of the dipole
correlation function is performed differently. In the limit
t → ∞, the system becomes stationary and the correlation
function

Cij (t, t − τ) = 〈D̂i(t)D̂j (t − τ)〉 → Cij (τ ; v) (80)

depends only on the time difference τ = t − t ′ and the
final velocity v. (Corrections due to the acceleration stage
drop out at this point.) In the previous expression the dipole

operator �̂D(t) contains the exact dynamics of the moving
atomic dipole (all orders in perturbation theory), i.e. including
the backaction from the field/matter. The mean value has to be
evaluated with respect to ρ̂NESS = limt→∞ ρ̂(t) which defines
the (in general unknown) density matrix describing the non-
equilibrium steady state (NESS). The latter obviously depends
on the atom’s velocity v; which is why we added the second
argument v to the correlation function.

For a dipole operator with the structure �̂D(t) =
d

∑
�η �η(Âg�η(t) + Â

†
g�η(t)), the matrix Cij (τ ; v) is symmetric,

and since stationarity implies Cij (τ ; v) = C∗
ij (−τ ; v), the

power spectrum

Sij (ω; v) =
∫ ∞

−∞
dτ eiωτCij (τ ; v) (81)

is symmetric and real. The frictional force can then be
written as

F = − 1

2π2

∫
d2k

k
k

e−2kz

×
∫ ∞

0
dω Im R(ω)kik

∗
j Sij (k · v − ω; v) . (82)

In order to evaluate the previous expression one needs to
know Sij (ω; v), which is in general available only within a
perturbative approach. (An exception is an isotropic oscillator
atom for which the dipole power spectrum can be found
exactly [18].) For the model atom of figure 1(right), there
is a Pauli algebra for each excited state |�η〉, spanned by the
operator σ̂1 = Âg�η + Â

†
g�η = |�η〉〈g| + |g〉〈�η|, together with

σ̂2 = i(|g〉〈�η| − |�η〉〈g|) and σ̂3 = |�η〉〈�η| − |g〉〈g|. With
the atom+field coupling V̂ (t) = −D̂i(t)Êi(�r(t), t), we have
the following nonlinear equation of motion in the Heisenberg
picture

¨̂σ 1(t) + �2σ̂1(t) = −2d�

h̄
σ̂3(t) �η · �̂E(�r(t), t). (83)

We focus our attention on the computation of the two-time
correlation tensor Cij (t, t

′; v) = d2 ∑
�η ηiηjC(t, t ′; v) with

C(t, t ′; v) = 〈σ̂1(t)σ̂1(t
′)〉. To the lowest order in d, it can

be evaluated from the free evolution of the dipole operator,
resulting in C

(2)
ij (t, t ′; v) = d2δij e−i�(t−t ′) which is nothing

but equation (63). This results, however, in a frictional force
that is exponentially suppressed in 1/v (see also the discussion
after equation (76)). To get a force scaling as a power law in
v, one needs to include second-order radiative corrections in
C(t, t ′; v). To this end we first insert in equation (83) the formal
solution for the dynamics of

σ̂3(t) = σ̂3(−∞) +
2d

h̄�

∫ t

−∞
dt1

˙̂σ 1(t1) �η · �̂E(�r(t1), t1), (84)

and then replace the exact field �̂E(�r, t) by its free evolution
�̂Efree(�r, t), given in equation (69). This leads to an equation
of motion correct to the second order in atom–field coupling:

¨̂σ 1(t) +
2d2

h̄2

∫ t

−∞
dt1ηiηj {Êfree

i (�r(t), t), Êfree
j (�r(t1), t1)} ˙̂σ 1(t1)

+�2σ̂1(t) = −2d�

h̄
σ̂3(0)�η · �̂Efree(�r(t), t). (85)

Multiplying this equation from the right by σ̂1(t
′) and taking

the expectation value over the initial state |g, vac〉 (we recall
that the bare initial state can be used here because corrections
to the NESS are captured in perturbation theory), we get

C̈(t, t ′; v) + �2C(t, t ′; v) +
∫ t

−∞
dt1µ(t − t1; v)Ċ(t1, t

′; v)

= −2d�

h̄
〈σ̂3(0)�η · �̂Efree(�r(t), t)σ̂1(t

′)〉 (86)
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where the µ(τ ; v) is the Fourier transform of

µ(ω; v) = 2d2

πh̄

∫
d2k sign(ω + k · v)

|�η · �k|2
k

×e−2kzIm R(ω + k · v). (87)

From equation (85), we also get the stationary solution for the
dipole operator, correct to second order:

σ̂1(t) = −2d�

h̄

∫ ∞

−∞

dω

2π

∫
d2k

(2π)2

× σ̂3(0)�η · �̂Efree(k, ω + k · v)

�2[1 − �(ω; v)] − ω2 − iωγ (ω; v)
ei(k·r−ωt), (88)

where γ (ω; v) = µ(ω; v)/2 and (P denotes the principal
value)

�(ω; v) = −P
∫ ∞

0

dω′

π

ω2

�2

µ(ω′, v)

ω′2 − ω2
. (89)

are both even in ω and give the second-order atomic frequency
shift and decay rate. (They depend also on the transition dipole
�η and on velocity.)

Finally, inserting equation (88) into equation (86) and
Fourier transforming the resulting expression, we can write the
dipole spectrum (81) to fourth order in the dipole coupling as

Sij (ω; v) = 2h̄

∫
d2k θ(ω + k · v)Im R(ω + k · v) e−2kz

×αin(ω; v)
knk

∗
m

k
α∗

mj (ω; v) (90)

where we defined

αij (ω; v) =
∑

�η

αηiηj�
2

�2(1 − �(ω; v)) − ω2 − iωγ (ω; v)
. (91)

Note that this velocity-dependent polarizability differs from
the ‘simple damping’ velocity-independent form given in
equation (67), as it contains non-Markovian memory effects
through the frequency-dependent shift �(ω; v) and damping
γ (ω; v). Using the symmetry in ω of all involved functions,
one can show that Sij (ω; v) is even in v and that for small
velocities, it satisfies the fluctuation-dissipation relation:

Sij (ω; v) = 2h̄θ(ω)Im α̃ij (ω) + O(v2) (92)

where the imaginary part of the ‘dressed’ polarizability is

Im α̃ij (ω) =
∫

d2k Im R(ω) e−2kzαin(ω; 0)
knk

∗
m

k
α∗

mj (ω; 0) .

(93)

Using this in equation (82), we obtain the quantum friction
force to fourth order in the coupling, namely

F = − 2h̄

π2

∫
d2k

k
k

e−2kz

∫ ∞

0
dω Im R(ω)

×kik
∗
k θ(k · v − ω)Im α̃ij (k · v − ω) . (94)

The key observation is that the step function θ(k ·v−ω) limits
the ω-integral to the narrow spectral range 0 < ω < k · v
of the anomalous Doppler effect. For small velocities, we
can expand the frequency-dependent functions Im R(ω) and

Im α̃ij (ω) around ω = 0. Only the first derivatives contribute
since both functions are odd in ω. One obtains in this way

F ≈ − 45h̄vv2

64πz7
Im α̃′(0)Im R′(0), (95)

where α̃′(0) is the frequency derivative of the dressed atomic
polarizability given in equation (93), evaluated for an atom at
rest (v = 0) at distance z from the surface. (For the full distance
dependence, one has to perform the k-integral in equation (93)
to obtain Im α̃ij (ω) ∼ 1/z3.) Note that, in contrast to
the prediction of the previous subsection, non-equilibrium
fluctuation electrodynamics results in a v3-dependence for
quantum friction.

A few remarks are in order. First, the next-order
term proportional to v2 in the expansion of the dipole
power spectrum in equation (92) leads to corrections to
the frictional force proportional to v5. Second, we note
that the result in equation (95), derived from the fourth-
order expansion of the dipole–dipole correlation for the
moving two-level atom, and valid in the low velocity limit,
coincides with the result of fluctuation electrodynamics in local
equilibrium [14, 16, 17] when the corresponding perturbative
expression for the polarizability is used, and differs from the
frictional power PA in Barton’s calculation by a factor of
5 (see equation (24)). Third, the same expression for the
frictional force in equation (95) is obtained for the moving
atom treated as an isotropic harmonic oscillator, a case in which
exact expressions for the dipole–dipole correlation and a non-
equilibrium fluctuation-dissipation relation are available [18].
Finally, it is possible to show that a peculiar cancellation occurs
in the computation of the fourth-order dipole–dipole correlator
for an atom moving at constant velocity, which translates into
an exact cancellation of terms linear in v in the frictional
force [43].

6. Conclusion

In summary, we have shown that the calculation of atom–
surface quantum friction in the formulation based on
perturbation theory [9] depends on how the atom is boosted
from being initially at rest to a configuration in which it is
moving at constant velocity parallel to the planar interface.
We pointed out a subtle cancellation between the one-photon
and part of the two-photon dissipating power. As a result the
leading order contribution to the frictional power is quartic
in velocity. Also, an alternative calculation of the average
radiation force leads to the same conclusions, that is atom–
surface quantum friction scales as v3.

We have reviewed recent calculations (Scheel and
Buhmann [8] and Intravaia et al [18]) that generalize
fluctuation electrodynamics for the computation of the atom-
surface quantum friction in the non-equilibrium stationary
state. They agree on the way the friction force is determined
by the fluctuation spectrum of the dipole alone (equation (72)),
but differ in evaluating that spectrum, in particular in the low-
frequency regime where the anomalous Doppler shift [32]
arises (ω ∼ v/z). This leads in one case [8] to a friction
force linear in v, and in the other [18] to a v3 force. To validate
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the master equation techniques behind these approaches and to
resolve this discrepancy, it would be very interesting to extend
the time-dependent perturbation theory pursued here and to
calculate, for example, atom–field correlations in the stationary
state.
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Appendix A. Two-photon emission

A.1. Leading to a force O(v)

The result for the frictional power in [9] that turns out to
scale like O(v2), arises from the following integral (Barton’s
notation PB, equation (4.11) of [9] with the missing prefactor
from the erratum)

PB = h̄α2�2

(2π)3

∫
dκ1 dκ2 e−2(k1+k2)z

(k1 · k2 − k1k2)
2

k1k2

×(ω1 + ω2)Im R(ω1)Im R(ω2)
δ(� − ω′

1)(k2 · v)2

(� + ω2)2(� + ω′
2)

2

(A.1)

where, deviating from Barton’s notation, the prime denotes the
Doppler-shifted frequencies, e.g.: ω′

1 = ω−k1 ·v. We expand
to the leading order in v and approximate δ(� − ω′

1)/(� +
ω′

2)
2 ≈ δ(� − ω1)/(� + ω2)

2 in the second line (drop the
primes). The integrals over the wave vectors k1,2 are then
elementary and give 9π2v2/(16z8)—this frictional power is
quadratic in the atomic velocity v. The δ-function fixes one
frequency to ω1 = �. The remaining frequency integral is
evaluated for a narrow surface plasmon resonance, 	 � ωS .
This gives

∫ ∞

0
dω

Im R(ω)

(� + ω)3
≈ πω2

p

4ωS(� + ωS)3
+

ω2
p	

4�ω4
S

. (A.2)

Barton gives the first term, and the second arises from the
low-frequency limit of the surface plasmon spectral density. It
contributes in particular in the regime � ∼ 	 � ωS . Putting
everything together, Barton’s approach yields

PB ≈ 9

128

h̄α�v2

z5

α�Im R(�)

4z3︸ ︷︷ ︸
γ

[
ω2

p

ωS(� + ωS)3
+

ω2
p	

π�ω4
S

]

(A.3)

where we have marked the excited state decay rate in the short-
distance limit (equation (2.11) of [9]).

A.2. Leading to a force O(v3)

Barton’s result for the frictional power that turns out to
scale like O(v4), arises from the following integral (Barton’s
notation PA, equation (4.11) of [9])

PA = h̄α2�4ω4
p	2

16π3

∫
dκ1 dκ2 e−2(k1+k2)z

(k1k2 − k1 · k2)
2

k1k2

× ω1ω2(ω1 + ω2)

|F(ω1, ωS)|2|F(ω2, ωS)|2
δ(ω′

1 + ω′
2)

(� + ω′
1)

2(� + ω′
2)

2
(A.4)

where the prime denotes the non-relativistic Doppler shift:
ω′

1 = ω − k1 · v. Note that the δ-function enforces energy
conservation in the frame comoving with the atom: the pair
of plasmons has zero energy there, ω′

1 + ω′
2 = 0. Since

the frequencies ω1,2 in the laboratory frame are positive,
this condition can only be satisfied if the Doppler shift is
anomalous, for example ω′

1 < 0. The same condition also
explains the spectrum of Cherenkov radiation [32].

To evaluate the integral (A.4), we assume that the Doppler
shift is small enough. More precisely, note that the exponential
factor e−2(k1+k2)z provides a typical range O(1/z) for the k-
vectors. The Cherenkov condition 0 � ω1 + ω2 = (k1 + k2) · v
then restricts ω1,2 to the range O(v/z) and the required
approximation is |k · v| = O(v/z) � �, ωS . The frequency
integrals then give in the leading order

PA � h̄α2ω4
p	2

96π3ω8
S

∫
(k1+k2)·v�0

d2k1 d2k2 e−2(k1+k2)z

× (k1k2 − k1 · k2)
2

k1k2
[(k1 + k2) · v]4 . (A.5)

The restriction on the integration domain can be lifted,
multiplying with 1

2 , since the integrand is even under the
transformation (k1x, k1y, k2x, k2y) �→ (−k2x, k2y, −k1x, k1y)

(v points along the x-axis). The k-integrals then reduce to
27π2/(16z10), and we get Barton’s equation (5.4)

PA � 9

512π

h̄v4α2ω4
p	2

ω8
Sz

10
. (A.6)

Note that this expression cannot be written in terms of
the (distance-dependent) decay rate which depends on the
plasmonic mode density at the atomic resonance �. The
calculation above illustrates that, on the contrary, the two-
plasmon emission in PA is concentrated at much lower
frequencies O(v/z). In the limit � � ωS , however,
equation (A.6) contains exactly the same scaling compared
to equation (95) of the fluctuation electrodynamics, and is just
smaller by a factor 1/5.

Note that it is not obvious that the radiated power P =
PA + PB and the frictional power −F · v give the same result,
as the energy taken from the atomic motion may also be used
to excited the atom. This term, denoted by dQ/dt by Dedkov
and Kyasov [42], is discussed in sections 3 and 4 for different
atomic trajectories.

Appendix B. Piecewise constant acceleration

We evaluate in this appendix the state of the atom+field system
in first and second order of perturbation theory, using an atomic
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trajectory whose velocity increases continuously over a finite
time (thin blue in figure 3). This serves as a check of the general
result (38) in the long-time limit and provides a complete list
of terms that enter into the two-photon production rate (45).

The one-photon amplitude c
(1)
1 (t) for the component |�η, κ〉

of the state (10) is proportional to (35)

A(e, kω; t) =
∫ t

−∞
dt1 ei(�+ω)t1 e−ik·r(t1) , (B.1)

where r(t1) is the atomic path. This determines in the next
order the amplitude of |κ1, κ2〉 to be proportional to

M(k1ω1, k2ω2; t) =
∫ t

−∞
dt2 A(e, k1ω1; t2) ei(−�+ω2)t2

×e−ik2·r(t2) . (B.2)

We consider a particular trajectory, namely a path with
piecewise constant acceleration (see caption of figure 3):

r(t) =




0 t � −τ

v
4τ

(t + τ)2 −τ < t � τ

vt τ < t

(B.3)

We define β = k · vτ , and consider the limiting case of
small velocity |β| � 1 and ‘smooth launch’ |� ± ω|τ � 1.
For simplicity, we condense the notation into A(e, kω; t) �→
Ae(t), � + ω �→ ω, and set τ �→ 1.

B.1. One-photon process

To perform the integration equation (B.1), we consider first the
case that t � −1. The integral is elementary:

t � −1 : Ae(t) = eiωt

iω
(B.4)

assuming that the coupling is switched off at the lower limit.
For −1 < t � 1, the t1-integral is split into −∞ < t1 � −1,
giving Ae(−1) from equation (B.4), and into −1 < t1 �
t , which makes a phase factor appear under the integral:
e−ik·r(t1) = e−iβ(t1+1)2/4. Since this phase is small, we expand
this exponential and find

−1 < t � 1 : Ae(t) ≈ Ae(−1)

+
∫ t

−1
dx eiωx

(
1 − iβ

4
(x + 1)2 + O(β2)

)

= eiωt

iω
− β

4

eiωt (ω2(t + 1)2 + 2iω(t + 1) − 2) + 2e−iω

ω3

+ . . . (B.5)

When the acceleration is finished, we thus get

Ae(1) = eiω

iω
− β

eiω

ω
− iβ

eiω

ω2
+

β(eiω − e−iω)

2ω3
. (B.6)

Finally, for larger times, the branch of the path with a constant
velocity contributes between 1 < t1 � t , again an elementary
integral:

t > 1 : Ae(t) = Ae(1) +
ei(ω−β)t − ei(ω−β)

i(ω − β)

≈ Ae(1) +
ei(ω−β)t

i(ω − β)
− eiω

iω
+ β

eiω

ω
+ iβ

eiω

ω2
.

(B.7)

We have expanded to first order in β all terms except the
one where βt appears in the exponent, because we shall be
interested in the long-time limit. Note the three cancellations
with Ae(1) so that we get

t > 1 : Ae(t) ≈ ei(ω−β)t

i(ω − β)
+

β(eiω − e−iω)

2ω3

= ei(ω−β)t

i(ω − β)
+

iβ

ω2

sin ω

ω
. (B.8)

Putting everything together and restoring the physical units,
we get

Ae(k1ω1; t) =




ei(�+ω1)t

i(� + ω1)
for t � −τ

ei(�+ω1−β1)t

i(� + ω1 − β1)
+

ik1 · v
(� + ω1)2

sin(� + ω1)τ

(� + ω1)τ

for t > τ

(B.9)

Note that the second line is exactly of the form put forward
on general grounds in equation (38) of the main text. The
first term corresponds to the ‘adiabatic limit’ where the atomic
velocity is taken at its final value. It is independent of
the duration τ of the acceleration. In the second term, the
sinc function (last fraction) reduces to unity for a sudden
acceleration (limit τ → 0). Any finite value of τ decreases
this amplitude, and effectively suppresses it when the atom is
smoothly accelerated, i.e. (� + ω1)τ � 1.

B.2. Two-photon process.

Its amplitude is given by integrating the one-photon amplitude
A(e, k1ω1; t2) once again (equation (B.2)). We use the
previous expression (B.9) and equation (B.7). Two parameters
appear β1,2 = k1,2 · vτ that we consider small and of the same
order.

We begin for t � −1 with an elementary integral

t � −1 : M(t) = − ei(ω1+ω2)t

(� + ω1)(ω1 + ω2)
. (B.10)

For −1 < t � 1, the first-order expansion in β1, β2 yields:

−1 < t � 1 : M(t) ≈ M(−1)

+
∫ t

−1
dt2

ei(ω1+ω2)t2

i(� + ω1)

(
1 − iβ2

4
(t2 + 1)2

)

−β1

∫ t

−1
dt2 ei(ω1+ω2)t2

{
(t2 + 1)2

4(� + ω1)
− i

(t2 + 1)

2(� + ω1)2

+
1

2(� + ω1)3

}

+β1

∫ t

−1
dt2 ei(−�+ω2)t2

e−i(�+ω1)

2(� + ω1)3
, (B.11)

where the last two lines arise from equation (B.7). The second
line is an integral analogous to equation (B.5), and the result
partially cancels with M(−1). The other integrals are just a
bit tedious to work out and eventually yield the cumbersome
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expression

M(t) ≈ − ei(ω1+ω2)t

(� + ω1)(ω1 + ω2)

− β1 + β2

i(� + ω1)
ei(ω1+ω2)t

{
(t + 1)2

4(ω1 + ω2)
− i

t + 1

2(ω1 + ω2)2

+
1

2(ω1 + ω2)3

}
− β1 + β2

i(� + ω1)

e−i(ω1+ω2)

2(ω1 + ω2)3

+
iβ1

2(� + ω1)2

× ei(ω1+ω2)t (1 − i(ω1 + ω2)(t + 1)) − e−i(ω1+ω2)

(ω1 + ω2)2

− β1

2(� + ω1)3

ei(ω1+ω2)t − e−i(ω1+ω2)

i(ω1 + ω2)

+
β1

2(� + ω1)3

ei(−�+ω2)te−i(�+ω1) − e−i(ω1+ω2)

i(−� + ω2)
.

(B.12)

We finally get to the physically interesting case of late times
where equation (B.8) can be used and the integrals become
again elementary

t > 1 : M(t) = M(1) +
∫ t

1
dt2

ei(ω1−β1+ω2−β2)t2

i(� + ω1 − β1)

+
∫ t

1
dt2 ei(−�+ω2−β2)t2

iβ1 sin(� + ω1)

(� + ω1)3

= M(1) − ei(ω1−β1+ω2−β2)t − ei(ω1−β1+ω2−β2)

(� + ω1 − β1)(ω1 − β1 + ω2 − β2)

+
ei(−�+ω2−β2)t − ei(−�+ω2−β2)

−� + ω2 − β2

β1 sin(� + ω1)

(� + ω1)3
. (B.13)

This can be written as a sum MA(t) + MB(t) + MC whose
terms we discuss separately now.

The ‘adiabatic amplitude’ appears in the first line of
equation (B.13)

MA(t) = − ei(ω′
1+ω′

2)t

(� + ω′
1)(ω

′
1 + ω′

2)

→ − (2� + ω′
1 + ω′

2) ei(ω′
1+ω′

2)t

(� + ω′
1)(� + ω′

2)(ω
′
1 + ω′

2)
(B.14)

where the notation ω′
i = ωi − βi was used. The term after

the arrow (→) in this formula gives the total amplitude after
symmetrizing the quantum numbers k1ω1 and k2ω2 of the two
plasmons. This expression is independent of τ because M
must be a squared time by definition. It is identical to the term
featuring ei�t in equation (4.6) of [9], the one that leads for
t → ∞ to the δ-function δ(ω′

1 + ω′
2) and the power PA.

The second line of equation (B.13) contains the other time-
dependent term:

MB(t) = ei(−�+ω′
2)t

−� + ω′
2

(k1 · v) sin(� + ω1)τ

(� + ω1)3τ
, (B.15)

where we have restored τ . To this order in v, the limit τ → 0
recovers the term proportional to ei(−�+�′

0)t in equation (4.6)
of [9]. We recall that this term leads to the δ-function δ(ω′

2−�)

and the power PB scaling with v2, together with its exchange-
symmetric partner. Note that this term, up to the first factor,

is exactly given by the second (constant) piece of the one-
plasmon amplitude Ae(k1ω1; t) in equation (B.9). Hence the
sinc function reduces its contribution if (� + ω1)τ � 1.

The remaining term MC collects all terms independent of
t in equation (B.13). Their expansion for small β1,2 is tedious
and leads to

MC = 1

(ω1 + ω2)2

{
β1

� − ω2
+

β2

� + ω1

}

× sin(ω1 + ω2)

(ω1 + ω2)
+ O(β2) . (B.16)

We add the corresponding expression under plasmon exchange
(1 ↔ 2) and get in physical units

MC,sym = 2�

(ω1 + ω2)2

{
k1 · v

�2 − ω2
2

+
k2 · v

�2 − ω2
1

}

× sin(ω1 + ω2)τ

(ω1 + ω2)τ
. (B.17)

It is straightforward to check that this is equal to the small-
v expansion of the constant terms in M(t) as given in
equation (4.6) of [9].

To summarize, we have extended the calculation of the
complete two-photon amplitude to an atomic path with an
acceleration phase of duration 2τ . The two-plasmon power
called PA, scaling with O(v4) does not depend on τ and
is unchanged, at least for small velocities. The power PB,
scaling with O(v2), depends on τ and becomes suppressed
when the launch duration τ is larger than the atomic period
1/�. We have confirmed the argument given earlier that this
O(v2) power can be computed from the first-order transition
amplitude: it is proportional to the probability of exciting the
atom in a non-adiabatic way. This means: the acceleration
has led to an amplitude shift in the ‘Lamb cloud’ of virtual
photons surrounding the atom. We may say that these photons
have become ‘real’ because their amplitude differs from the
adiabatic value.

B.3. Technical note

To get a probability amplitude that increases linearly with t ,
we need

lim
t→∞

eiνt − 1

ν
= 2π iδ(ν) , lim

t→∞

∣∣∣∣eiνt − 1

ν

∣∣∣∣2

= 2πtδ(ν).

(B.18)

If the ‘−1’ is rather a complex function a(ν), we may evaluate∣∣∣∣eiνt − 1 + 1 − a(ν)

ν

∣∣∣∣2

→ 2πtδ(ν) + 4πδ(ν)
Im a(ν)

ν
+

|1 − a(ν)|2
ν2

(B.19)

where the last two terms do not increase with t (if the final
integral converges, of course). Hence they drop out when a
transition rate is calculated.
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Appendix C. Evaluation of the average force

C.1. Second order: exponentially small

The second-order term of the average force (27) is given by

F(2)(t) = 2Re
∑

�η

∫
d3κ 〈g, vac|F̂(t)|�η, κ〉c(1)

1 (t) (C.1)

= 2d2

h̄
Re

∑
�η

∫
d3κ k|�η · �k|2|φκ |2 i

(� + ω′ − iλ)
,

(C.2)

where we have used the matrix element (11) and the amplitude
c
(1)
1 (t) (equation (14)). We consider in this appendix only the

long-time limit where r(t) = vt . Summing over the excited
states and taking the real part, one gets:

F(2)(t) = − 2d2

π

∫
d3κ k k e−2kzIm R(ω)δ(� + ω′) (C.3)

which is nothing but equation (28). The resonance condition
�+ω′ = 0 can only be satisfied for large k = O(�/v), making
this contribution exponentially small in v.

C.2. Fourth order, via vacuum

We continue with the fourth-order part involving the mixed
amplitude c

(2)∗
0 (t)c

(1)
1 (t) in equation (27). This product can be

combined with the last line of equation (21) for c
(3)
1 (t) where

we recognize the expression for c
(1)
1 (t). The sum yields a force

(subscript 0 for ‘going via zero-photon sector’)

F(4)
0 (t) = 2Re

∑
�η

∫
d3κ 〈g, vac|F̂(t)|�η, κ〉c(1)

1 (t)

×
{

− γgt − iγg/2 − δEg/h̄

� + ω′ − iλ

}
. (C.4)

Here, we recognize one term, −γgt F(2)(t), quadratic in
exponentially small parts, that translates the loss of probability
in the ground state. For the other piece, we use the identity

Re k
γg/2 + iδEg/h̄

(� + ω′ − iλ)2
= Re

{
(γg/2 + iδEg/h̄)∇v

1

� + ω′ − iλ

}
= γg

2
∇vRe

1

� + ω′ − iλ
− δEg

h̄
∇vIm

1

� + ω′ − iλ
(C.5)

to identify ground-state decay rate and level shift from
equation (17)

F(4)
0 (t) = − 2Re

∑
�η

∫
d3κ 〈g, vac|F̂(t)|�η, κ〉c(1)

1 (t)

× iγg/2 − δEg/h̄

� + ω′ − iλ

= 2d2

h̄
Re

∑
�η

∫
d3κ k|�η · �k|2|φκ |2 γg/2 + iδEg/h̄

(� + ω′ − iλ)2

= γg∇v
d2

h̄

∑
�η

∫
d3κ |�η · �k|2|φκ |2Re

1

� + ω′ − iλ

− δEg

h̄
∇v

2d2

h̄

∑
�η

∫
d3κ k|�η · �k|2|φκ |2Im

× 1

� + ω′ − iλ

= − ∇v

(
γgδEg

)
. (C.6)

Again, this is an exponentially small term. For its
interpretation, one may think about the adiabatically stored
energy in the Lamb-shifted ground state δEg .

C.3. Fourth order, via two photons

The final piece for the force arises from that part of c
(3)
1 (t)

that goes via the two-photon sector (first and second lines
of equation (21)). We have to add the mixed term from the
coherence between the one- and two-photon sectors. The two
contributions are denoted F(4)[03]

2 and F(4)[12]
2 and are handled

separately (subscript 2 for ‘going via two-photon sector’) :

F(4)[03]
2 = 2Re

∑
�η

∫
d3κ 〈g, vac|F̂(t)|�η, κ〉

×
{

i d3φ∗
κ ei(�+ω′)t

h̄3(� + ω′ − iλ)

∫
d3κ1

(�η · �k1)|φκ1 |2(�k1 · �k)∗

(ω′
1 + ω′ − iλ)

×
( 1

� + ω′
1 − iλ

+
1

� + ω′ − iλ

)}

= 2d4

h̄3 Re
∑

�η

∫
d3κ d3κ1 |�k1 · �k|2|φκ |2|φκ1 |2

× ik
(� + ω′ − iλ)(ω′

1 + ω′ − iλ)

×
{ 1

� + ω′
1 − iλ

+
1

� + ω′ − iλ

}
. (C.7)

To proceed, we neglect exponentially small terms arising from
the δ-functions δ(�+ω′) and drop the −iλ in the corresponding
non-resonant denominators. The only term that remains is
(re-labeling κ �→ κ2 and Bose symmetrizing the integrand)

F(4)[03]
2 � − πd4

h̄3

∑
�η

∫
d3κ1 d3κ2 |�k1 · �k2|2|φκ1 |2|φκ2 |2

× δ(ω′
1 + ω′

2)
{ k1

� + ω′
1

+
k2

� + ω′
2

}
× 2� + ω′

1 + ω′
2

(� + ω′
1)(� + ω′

2)
. (C.8)

Finally, we have to add the triple integral (symmetry factor 1/2
cancels)

F(4)[12]
2 = Re

∑
�η

∫
d3κ d3κ1 d3κ2 〈�η, κ|F̂(t)|g, κ1κ2〉

× c
(1)∗
1 (t)c

(2)
2 (t) . (C.9)

Insert the matrix element (12) with its two Bose-symmetric
terms, the amplitudes (14) and (15), exploit the δ-functions
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δ(κ − κ1,2), to get

F(4)[12]
2 = d4

h̄3 Re
∫

d3κ1 d3κ2 |�k1 · �k2|2|φκ1 |2|φκ2 |2

×
{

i

ω′
1 + ω′

2 − iλ

( k2

� + ω′
1 + iλ

+
k1

� + ω′
2 + iλ

)
×

( 1

� + ω′
1 − iλ

+
1

� + ω′
2 − iλ

)}
. (C.10)

Neglecting again the imaginary part in the non-resonant
denominators we observe that the same structure as
equation (C.8) emerges, up to a switch k1 ↔ k2 in the photon
momenta. By symmetry, we expect that F and v are parallel
and find for the projection

v · (F(4)[03]
2 + F(4)[12]

2 ) � −πd4

h̄3

∑
�η

∫
d3κ1 d3κ2

×|�k1 · �k2|2|φκ1 |2|φκ2 |2δ(ω′
1 + ω′

2)

×v · (k1 + k2)
( 2� + ω′

1 + ω′
2

(� + ω′
1)(� + ω′

2)

)2
. (C.11)

Under the δ(ω′
1 +ω′

2), we may replace v · (k1 + k2) �→ ω1 +ω2,
and we recover the structure of the two-photon emission

v · (F(4)[03]
2 + F(4)[12]

2 )

� −πd4

h̄3

∑
�η

∫
d3κ1 d3κ2 |�k1 · �k2|2|φκ1 |2|φκ2 |2δ(ω′

1 + ω′
2)

×(ω1 + ω2)
4�2

(� + ω′
1)

2(� + ω′
2)

2

= −PA . (C.12)
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